18 found
Order:
  1. Why Boltzmann Brains Are Bad.Sean M. Carroll - 2020 - In Shamik Dasgupta, Brad Weslake & Ravit Dotan (eds.), Current Controversies in Philosophy of Science. London: Routledge. pp. 7-20.
    Some modern cosmological models predict the appearance of Boltzmann Brains: observers who randomly fluctuate out of a thermal bath rather than naturally evolving from a low-entropy Big Bang. A theory in which most observers are of the Boltzmann Brain type is generally thought to be unacceptable, although opinions differ. I argue that such theories are indeed unacceptable: the real problem is with fluctuations into observers who are locally identical to ordinary observers, and their existence cannot be swept under the rug (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  2. Consciousness and the Laws of Physics.Sean M. Carroll - 2021 - Journal of Consciousness Studies 28 (9-10):16-31.
    We have a much better understanding of physics than we do of consciousness. I consider ways in which intrinsically mental aspects of fundamental ontology might induce modifications of the known laws of physics, or whether they could be relevant to accounting for consciousness if no such modifications exist. I suggest that our current knowledge of physics should make us skeptical of hypothetical modifications of the known rules, and that without such modifications it’s hard to imagine how intrinsically mental aspects could (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  3. Reality as a Vector in Hilbert Space.Sean M. Carroll - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer. pp. 211-224.
    I defend the extremist position that the fundamental ontology of the world consists of a vector in Hilbert space evolving according to the Schrödinger equation. The laws of physics are determined solely by the energy eigenspectrum of the Hamiltonian. The structure of our observed world, including space and fields living within it, should arise as a higher-level emergent description. I sketch how this might come about, although much work remains to be done.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  4. Self-locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics.Charles T. Sebens & Sean M. Carroll - 2016 - British Journal for the Philosophy of Science (1):axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, but we (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   48 citations  
  5. In What Sense Is the Early Universe Fine-Tuned?Sean M. Carroll - 2023 - In Barry Loewer, Brad Weslake & Eric B. Winsberg (eds.), The Probability Map of the Universe: Essays on David Albert’s _time and Chance_. Cambridge MA: Harvard University Press.
    It is commonplace in discussions of modern cosmology to assert that the early universe began in a special state. Conventionally, cosmologists characterize this fine-tuning in terms of the horizon and flatness problems. I argue that the fine-tuning is real, but these problems aren't the best way to think about it: causal disconnection of separated regions isn't the real problem, and flatness isn't a problem at all. Fine-tuning is better understood in terms of a measure on the space of trajectories: given (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  6.  63
    Mad-Dog Everettianism: Quantum Mechanics at Its Most Minimal.Sean M. Carroll & Ashmeet Singh - 2019 - In Anthony Aguirre, Brendan Foster & Zeeya Merali (eds.), What is Fundamental? Cham: Springer Verlag. pp. 95-104.
    To the best of our current understanding, quantum mechanics is part of the most fundamental picture of the universe. It is natural to ask how pure and minimal this fundamental quantum description can be. The simplest quantum ontology is that of the Everett or Many-Worlds interpretation, based on a vector in Hilbert space and a Hamiltonian. Typically one also relies on some classical structure, such as space and local configuration variables within it, which then gets promoted to an algebra of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   20 citations  
  7. Beyond Falsifiability: Normal Science in a Multiverse.Sean M. Carroll - 2019 - In Dawid Richard, Dardashti Radin & Thebault Karim (eds.), Epistemology of Fundamental Physics: Why Trust a Theory? Cambridge University Press.
    Cosmological models that invoke a multiverse - a collection of unobservable regions of space where conditions are very different from the region around us - are controversial, on the grounds that unobservable phenomena shouldn't play a crucial role in legitimate scientific theories. I argue that the way we evaluate multiverse models is precisely the same as the way we evaluate any other models, on the basis of abduction, Bayesian inference, and empirical success. There is no scientifically respectable way to do (...)
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  8.  74
    Spacetime and Geometry: An Introduction to General Relativity.Sean M. Carroll - 2003 - San Francisco, USA: Pearson.
    Graduate-level textbook in general relativity.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  9. Energy Non-conservation in Quantum Mechanics.Sean M. Carroll & Jackie Lodman - 2021 - Foundations of Physics 51 (4):1-15.
    We study the conservation of energy, or lack thereof, when measurements are performed in quantum mechanics. The expectation value of the Hamiltonian of a system changes when wave functions collapse in accordance with the standard textbook treatment of quantum measurement, but one might imagine that the change in energy is compensated by the measuring apparatus or environment. We show that this is not true; the change in the energy of a state after measurement can be arbitrarily large, independent of the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Why Is There Something, Rather Than Nothing?Sean M. Carroll - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    It seems natural to ask why the universe exists at all. Modern physics suggests that the universe can exist all by itself as a self-contained system, without anything external to create or sustain it. But there might not be an absolute answer to why it exists. I argue that any attempt to account for the existence of something rather than nothing must ultimately bottom out in a set of brute facts; the universe simply is, without ultimate cause or explanation.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Quantum Mereology: Factorizing Hilbert Space into Subsystems with Quasi-Classical Dynamics.Sean M. Carroll & Ashmeet Singh - 2021 - Physical Review A 103 (2):022213.
    We study the question of how to decompose Hilbert space into a preferred tensor-product factorization without any pre-existing structure other than a Hamiltonian operator, in particular the case of a bipartite decomposition into "system" and "environment." Such a decomposition can be defined by looking for subsystems that exhibit quasi-classical behavior. The correct decomposition is one in which pointer states of the system are relatively robust against environmental monitoring (their entanglement with the environment does not continually and dramatically increase) and remain (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  12.  31
    Completely Discretized, Finite Quantum Mechanics.Sean M. Carroll - 2023 - Foundations of Physics 53 (6):1-13.
    I propose a version of quantum mechanics featuring a discrete and finite number of states that is plausibly a model of the real world. The model is based on standard unitary quantum theory of a closed system with a finite-dimensional Hilbert space. Given certain simple conditions on the spectrum of the Hamiltonian, Schrödinger evolution is periodic, and it is straightforward to replace continuous time with a discrete version, with the result that the system only visits a discrete and finite set (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  13. De Sitter Space Without Dynamical Quantum Fluctuations.Kimberly K. Boddy, Sean M. Carroll & Jason Pollack - 2016 - Foundations of Physics 46 (6):702-735.
    We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  14. Many Worlds, the Born Rule, and Self-Locating Uncertainty.Sean M. Carroll & Charles T. Sebens - 2014 - In Daniele C. Struppa & Jeffrey M. Tollaksen (eds.), Quantum Theory: A Two-Time Success Story. Springer. pp. 157-169.
    We provide a derivation of the Born Rule in the context of the Everett (Many-Worlds) approach to quantum mechanics. Our argument is based on the idea of self-locating uncertainty: in the period between the wave function branching via decoherence and an observer registering the outcome of the measurement, that observer can know the state of the universe precisely without knowing which branch they are on. We show that there is a uniquely rational way to apportion credence in such cases, which (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  15. Reality Realism.Sean M. Carroll - manuscript
    In Morality & Mathematics, Justin Clarke-Doane argues that it is hard to imagine being "a realist about, for example, the standard model of particle physics, but not about mathematics." I try to explain how that seems very possible from the perspective of a physicist. What is real is the physical world; mathematics starts from descriptions of the natural world and extrapolates from there, but that extrapolation does not imply any independent reality. -/- Submitted to an Analysis Reviews symposium on Clarke-Doane's (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  16. The Quantum Field Theory on Which the Everyday World Supervenes.Sean M. Carroll - 2022 - In Stavros Ioannidis, Gal Vishne, Meir Hemmo & Orly Shenker (eds.), Levels of Reality in Science and Philosophy. Copenhagen: Springer Cham. pp. 27-46.
    Effective Field Theory (EFT) is the successful paradigm underlying modern theoretical physics, including the "Core Theory" of the Standard Model of particle physics plus Einstein's general relativity. I will argue that EFT grants us a unique insight: each EFT model comes with a built-in specification of its domain of applicability. Hence, once a model is tested within some domain (of energies and interaction strengths), we can be confident that it will continue to be accurate within that domain. Currently, the Core (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  11
    Why Not?Sean M. Carroll - 2009-09-10 - In Russell Blackford & Udo Schüklenk (eds.), 50 Voices of Disbelief. Wiley‐Blackwell. pp. 105–111.
    This chapter contains sections titled: Notes.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  18. Part I. Are Boltzmann Brains Bad?: Why Boltzmann Brains are bad.Sean M. Carroll - 2020 - In Shamik Dasgupta, Brad Weslake & Ravit Dotan (eds.), Current Controversies in Philosophy of Science. London: Routledge.
    No categories
     
    Export citation  
     
    Bookmark